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Matrices

DEFINITION

A rectangular arrangement of elements in rows and columns, is called a matrix. Such a rectangular arrangement
of numbers is enclosed by small () or big [ ] brackets. Generally a matrix is represented by a capital latter A, B,

Coes etc. and its element are represented by small letters a, b, c, X, y etc.
Following are some examples of a matrix :
a b 1 5 3 2
A= c dl B= 40 2 C= 0l D=1]1,5, 6], E =[5]

ORDER OF MATRIX

A matrix which has m rows and n columns is called a matrix of order m x n, and its represented by
A or A= [aij]

mxn mxn

It is obvious to note that a matrix of order m x n contains mn elements. Every row of such a matrix contains n
elements and every column contains m elements.

TYPES OF MATRICES

Row matrix
If in @ matrix, there is only one row, then it is called a Row Matrix.
Thus A= [a;] ., is a row matrix if m= 1
Column Matrix
If in a matrix, there is only one column, then it is called a column matrix.
ThusA=[a is a column matrix if n = 1.
Square matrix
If number of rows and number of columns in a matrix are equal, then it is called a square matrix.

ij] mxn

Thus A= [aij]mxn IS a square matrix if m = n.
Note : (a) If m »« nthen matrix is called a rectangular matrix.
(b) The elements of a square matrix A for whichi=jie., a,;, a,, as,......a, are called principal diagonal
elements and the line joining these elements is called the principal diagonal or leading diagonal of
matrix A.

(c) Trace of a matrix : The sum of principal diagonal elements of a square matrix A is called the trace of
matrix A which is denoted by trace A. Trace A= a,; +a,, +...4,

n
Singleton matrix
If in a matrix there is only one element then it is called singleton matrix.
Thus A= [aij] is a singleton matrix if m=n = 1.
Null or zero matrix
If in a matrix all the elements are zero then it is called a zero matrix and it is generally denoted by O.
ThusA=[a IS a zero matrix if a; = 0 foralliand j.
Diagonal matrix
If all elements except the principal diagonal in a square matrix are zero, it is called a diagonal matrix.
Thus a square matrix ~ A= [aij] is a diagonal matrix if a; = 0, wheni « j.

mxn

ij:I mxn

[1]
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Note : (&) No element of principal diagonal in diagonal matrix is zero.
(b) Number of zero is a diagonal matrix is given by n? — n where n is a order of the matrix.
Scalar Matrix
If all the elements of the diagonal in a diagonal matrix are equal, it is called a scalar matrix.
Thus a square matrix A [aij] is a scalar matrix is

0 i#]j .
;= |y = where k is a constant.

Unit matrix
If all elements of principal diagonal in a diagonal matrix are 1, then it is called unit matrix. A unit matrix of order
n is denoted by 1 .
Thus a square matrix
, , - 1i=]
A= [aij] iS a unit matrix if ;= \o %]
Note : Every unit matrix is a scalar matrix.
Triangular matrix
A square matrix [aij] is said to be triangular if each element above or below the principal diagonal is zero. It is of
two types -
(a) Upper triangular matrix : A square matrix [aij] is called the upper triangular matrix, if a; = 0 wheni>j.
(b) Lower triangular matrix : A square matrix [aij] is called the lower triangular matrix, if
e =0wheni<j
.. . . e n(n-1 . .
Note : Minimum number of zero in a triangular matrix is given by 5 where n is order of matrix.
Equal matrix
Two matrices Aand B are said to be equal if they are of same order and their corresponding elements are equal.

Singular matrix

Matrix A is said to be singular matrix if its determinant |A| = 0, otherwise non-singular matrix i.e.,
If det |A|=0 = singular and det|A] # 0 = non-singular

ADDITION AND SUBTRACTION OF MATRICES

IfA=[a],,and B = [by],., are two matrices of the same order then their sum A+ B is a matrix whose each
element is the sum of corresponding elements.
ie., A+B= [aij + bij] mn
A-Bisdefinedas A-B=[a;-b] .,
Note : Matrix addition and subtraction can be possible only when matrices are of same order.

Properties of matrices addition

If A, B and C are matrices of same order, then-

(i) A+ B =B + A (Commutative Law)

(i) (A+B)+C=A+(B+C) (Associative law)

@) A+0O=0+A=A, whereO is zero matrix which is additive identity of the matrix.

(iv) A+ (-A) =0 = (-A) + A where (-A) is obtained by changing the sign of every element of A which is
additive inverse of the matrix
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A+B=A+C

(V) BiA- C+A} = B = C (Cancellation law)

(vi) Trace (A + B) = trace (A) = trace (B)

SCALAR MULTIPLICATION OF MATRICES

LetA= [aij]mxn be a matrix and k be a number then the matrix which is obtained by multiplying every element of
Aby k is called scalar multiplication of A by k and it denoted by kA.

Thus A=lgln, = kA=[ky]

mxn

Properties of scalar multiplication

If A, B are matrices of the same order and m, n are any numbers, then the following results can be easily
established.

(i) m(A +B)=mA + mB (ii) (m + n)A=mA + nA (iii) m(nA) = (mn)A = n(mA)

MULTIPLICATION OF MATRICES

If Aand B be any two matrices, then their product AB will be defined only when number of column in Ais equal
to the number of rows in B. IfA= [aij]mxn andB = [bij]nxp then their product AB =C = [cij], will be matrix of order
m x p, where

n
(AB),=C; = ;airbq

Properties of matrix multiplication

If A, B and C are three matrices such that their product is defined, then

() AB = BA (Generally not commutative)
(i) (AB) C=A(BC) (Associative Law)
@) IA=A=AIl lisidentity matrix for matrix multiplication

(iv) A(B+ C)=AB + AC (Distributive law)
(v) IfAB =AC =» B = C (cancellation Law is not applicable)

(vi) If AB =0 It does not mean that A= 0 or B = 0, again product of two non-zero matrix may be zero
matrix.

(vii) trance (AB) = trance (BA)
Note : (i) The multiplication of two diagonal matrices is again a diagonal matrix.
(if) The multiplication of two triangular matrices is again a triangular matrix.
(iii) The multiplication of two scalar matrices is also a scalar matrix.
(iv) If Aand B are two matrices of the same order, then
(a) (A+B)*=A?+ B? + AB + BA
(b) (A-B)? = A’ + B2— AB - BA
(c) (A- B) (A+B) = A’-B?+ AB - BA
(d) (A+B) (A-B) =A?- B>~ AB + BA
(€) A(-B) = (-A) B = —(AB)

Positive Integral powers of a matrix

The positive integral powers of a matrix A are defined only when A is a square matrix.
Also then A= AA A’=AAA=AA
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Also for any positive integers m, n
(l) Am An - Am+n (”) (Am)n - Amn - (An)m
i)y I"=1,1M=1 (iv) A° = |_where A'is a square matrices of order n.

TRANSPOSE OF MATRIX

If we interchange the rows to columns and columns to rows of a matrix A, then the matrix so obtained is called
the transpose of A and it is denoted by

AT or A' or A
From this definition it is obvious to note that
(i) Order of Aismxn = order of ATisnx m
i) (AN = (A); "1 J)

Properties of Transpose

If A, B are matrices of suitable order then
0 (A=A

i) (A+B)=A"+B'

(i) (A-B) =AT-B"

(iv) (kA)" = kAT

(v) (AB)" =B'A’

Vi) (AA...AY =AT. A
(vii) (A" = (A" n e N

SYMMETRIC AND SKEW-SYMMETRIC MATRIX

(a) Symmetric matrix : A square matrix A = [aij] is called symmetric matrix if 8 = 8 for all f:] orAT= A
Note : (i) Every unit matrix and square zero matrix are symmetric matrices.

.. Y . . . .. n(n+1
(if) Maximum number of different element in a symmetric matrix is %

(b) Skew-symmetric matrix : A square matrix A = [aij] is called skew-symmetric matrix if

a;=-q; foralli, j or AT=-A
Note : (i) All principal diagonal elements of a skew-symmetric matrix are always zero because for
any diagonal element - a;=-a;, = @a;=0

(i) Trace of a skew symmetric matrix is always 0

Properties of symmetric and skew-symmetric matrices

(i) If Ais a square matrix, then A + AT, AAT, ATA are symmetric matrices while A-AT is skew-symmetric
matrices.

(i) If A, B are two symmetric matrices, then-
(a) A+ B, AB + BA are also symmetric matrices.
(b) AB — BA is a skew-symmetric matrix.
(c) AB is a symmetric matrix when AB = BA
(i) If A, B are two skew-symmetric matrices, then-
(@) A = B, AB — BA are skew-symmetric matrices.
(b) AB + BA is a symmetric matrix.
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(iv) IfAis a skew-symmetric matrix and C is a column matrix, then C" AC is a zero matrix.
(v) Every square matrix A can be uniquely be expressed as sum of a symmetric and skew symmetric matrix i.e.,

A= {E(A+A )}{E(A A )}

DETERMINANT OF A MATRIX

a;; 4

a1 Ay

IfA=

dz; Aag

defined as |A| =

be a square matrix, then its determinant, denoted by |A| or det. (A) is

aio
Az
azp

a3
ass
Az

Properties of the determinant of a matrix

(i) |Alexist < Ais asquare matrix

(i) |AB[ = |Al |B|
(i) [AT] = |A]

(iv) |kA|=K"|A|, if Ais a square matrix of order n.

(v)

If Aand B are square matrices of same order then |AB| = |BA|

(vi) If Alis skew symmetric matrix of odd order then |A| =0

(vii) IfA=diag (a,, a,, ..
(viii) JA" = JA", n ¢ N

ADJOINT OF A MATRIX

..a) then|Al =aa,...a,

If every element of a square matrix A be replaced by its cofactor in |A|, then the transpose of the matrix so
obtained is called the adjoint of Aand it is denoted by adj A

Thus if A= [aij] be a square matrix and Cij be the cofactor of 3 in |A|, then

adj A= [C]"

= (adjA),=C,

all
a21
Hence if A=

Properties of Adjoint Matrix

a,, C11

a,, C21
, then adj A=

& Cnl

C12 Cln Cll
C22 CZ n — C12
c, .. C.| |c,

If A, B are square matrices of order nand |_is corresponding unit matrix, then
(i) A(adjA)=|All = (adjA) A
(Thus A (adj A) is always a scalar matrix)

(i) [acj Al = A"

(i) adj (adj A) = |A"™? A

C, .. C,
C22 Cn2
C2n Cnn
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(V) [adj (adj A)| = | A (007 V) adi(A)=(@diA)

(vi) adj (AB) = (adj B) (adj A) (vi)  adj (A™) = (adjA)™", m ¢ N

(viii) adj (kA) = K™ (adj A), k e R (iIX) adj (1) =1,

(x) adj0=0 (xi) Ais symmetric = adj Ais also symmetric.
(xii) Alis diagonal = adj Ais also diagonal. (xii)  Ais triangular = adjAis also triangular.

(xiv) Aissingular = [|adjA|=0

INVERSE MATRIX

If A and B are two matrices such that
AB =1=BA
then B is called the inverse of Aand it is denoted by A™*. Thus
A'=B < AB=I1=BA
Further we may note from above property (i) of adjoint matrix that if |A| = 0, then

adj (A) (adj A) 1
A =I= A _1:_ i
A Al = ATE A A

Thus A exists < |A| = 0.
Note :

(i) Matrix A is called invertible if A™ exists.
(i1) Inverse of a matrix is unique.

Properties of Inverse Matrix

0 AH=A

(i) (A" =AY

(i) (AB)*=B*A?

(iv) (A =AD" neN
(v) adj (A™) = (adj A

(vi) |7 = = |Ar

[A]
(vi) A=diag (a,a, ...,a) = A =diag(a, ", a, ", .., a )
(viii) A is symmetric = A is also symmetric.

(ix) Adisdiagonal |A] = 0 = A™is also diagonal.

(x) Adisscalar matrix = A is also scalar matrix.

(xi) Adistriangular |A] 2 0 = Alisalso triangular.

SOME IMPORTANT CASES OF MATRICES

Orthogonal Matrix

Asquare matrix A is called orthogonal if
AAT=1=ATA ; ie, ifAT=AT

Idempotent matrix

Asquare matrix A is called an idempotent matrix if A% =A



Matrices and Determinants [7]

Involutory Matrix

Asquare matrix A is called an involutory matrix if ~ A*=1 or A1 =A

Nilpotent matrix

A square matrix Ais called a nilpotent matrix if there exist ap € N such that AP =0

Hermition matrix

A square matrix A is skew-Hermition matrix if AY=A; e, a. =-a"ij

Skew hermitian matrix

A square matrix A is skew-hermition is A=-A" ie., aij=-a; "i,j

Period of a matrix

If for any matrix A A=A
then k is called period of matrix (where k is a least positive integer)

Differentiation of matrix

00 gx)
It A:{h(x) |(XJ

dA | f(x) g(x)| . . . )
ax N 1'(x) is a differentiation of matrix A

then

Submatrix

Let Abe m x n matrix, then a matrix obtained by leaving some rows or columns or both of a is called a sub matrix
of A

Rank of a matrix

A number r is said to be the rank of a m x n matrix A if

(a) every square sub matrix of order (r + 1) or more is singular and

(b) there exists at least one square submatrix of order r which is non-singular.
Thus, the rank of matrix is the order of the highest order non-singular sub matrix.

We have |A| = 0 therefore r (A) is less then 3, we observe that B ﬂ IS a non-singular square sub matrix of
order 2 hence r (A) 2.
Note :

(i) The rank of the null matrix is zero.

(i) The rank of matrix is same as the rank of its transpose i.e., r(A) = r(A")

(i) Elementary transformation of not alter the rank of matrix.
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